Integral Homology of PGL2 over Elliptic Curves
نویسندگان
چکیده
The Friedlander–Milnor Conjecture [1] asserts that if G is a reductive algebraic group over an algebraically closed field k, then the comparison map H ét(BGk,Z/p) −→ H (BG,Z/p) is an isomorphism for all primes p not equal to the characteristic of k. Gabber’s rigidity theorem [2] implies that this map is indeed an isomorphism for the stable general linear group GL (this is due to Suslin [6] for k = C and to Jardine [3] for arbitrary k). Similarly, a proof of an unstable version of rigidity would lead to a proof of the unstable Friedlander–Milnor Conjecture. In this note we consider unstable rigidity for the group PGL2 over an elliptic curve E. We assume that E is defined by the equation F (x, y) = 0, where F (x, y) = y + a1xy + a3y − x 3 − a2x 2 − a4x− a6, and the ai lie in an infinite field k. Denote by E the projective curve E∪{∞}. Denote by A the coordinate ring of the affine curve E. If l ∈ k and F (l, y) = 0 has no rational solutions, denote by k(ω) the quadratic extension of k inside the algebraic closure k for which F (l, ω) = 0. Our main result is the following.
منابع مشابه
On the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کامل